

Look at upper bar, there are two groups of buttons: PHASE and CYCLE part

	\SE	CYCLE				
SHORT	CALC &	SHORT	DEVICE DESCRIPT	CALC	GRAPH	TUDEN

Press PHASE - SHORT COURSE, look at entrance text and figures ar presented, read it

Press PHASE CALC & GRAPH, that's important part of the software

Look at the box on the screen, that's 3D space, drag left-right, up-down

Press "h-ξ-lgp" button in 3D GRAPH SELECTION frame, that's first kind of 3D graph available, all 3D graphs are empty at this moment, only axes and their labels are visible

Look at 2D GRAPH SELECTION frame, press "h- ξ " button. Wait and see - 3D box is transforming to 2D box, try to use next buttons, see new boxes, all they are empty at this moment, only axis and their labels are visible, press "h- ξ -lgp" button again" to return to 3D view

Look at left and bottom at PHASE BALANCE CALCULATOR, that's tool for calculation of phase balance according to written data

	hi the	ξ s ^{wp}	PLE TLE		
	FIND SU	$\begin{array}{c} CANCE \ CALCU \\ p \\ p \\ \xi_{v} \end{array} \begin{vmatrix} p, \ \xi_{v} \\ t, \ \xi_{v} \end{vmatrix} \begin{vmatrix} p, \\ t, \\ t,$	ξ _ν t, ξ. ξ. p, ξ.		
	temperature, *C	liquid 30	vapour		
	pressure, MPa	0.1			
	concentration, kg/kg	0.289 0	.972		kro
	enthalpy, kl/kg				/
	entropy, k3/kgK			1	
	specific volume, m ¹ /kg			N.	
100	dyn, viscosity, Ns/m3				
	spedific volume, m ¹ /kg dyn, viscosity, Ns/m ¹ conductivity, W/mK				-

Press left button "t, p, ξl, ξv", wait for 3D view. Look at calculator frame - there are all main thermodynamic parameters presented. Look at 3D box - phases balance is visible, wait and see, try to drag the box, feel the 3D space

There are coloured lines on 3D view presented. Blue line means isobare, green means isotherm, yellow means isosthere, red represents spleeting of the phases balance

Look at right side of the screen at upper radios, press "pressure", look at the surface of constant pressure presented, turn it off, try another radios, move 3D box if needed

Look at the bottom radios of isolines collected, at first press "liqiud isobare", wait and see isobares presented on screen, don't turn-off the radio

Press "vapour isobare", wait and see isobares presented, don't turn-off the radio

Press "border sat./bubble", wait and see saturation and bubble lines presented on screen, don't turn-off the radio, feel the 3D space, move the box if needed, still don't turn-off the radio

Up to this moment isobare lines are visible. You are still in the "h- ξ -lgp" graph, press "s- ξ -T" button, wait and see 3D space presented, recognize graph properties

Press "lgp-1/T- ξ " button, wait and recognize graph properties

PHASE BALANCI

To transform 3D view, press "lgp-1/T" button on 2D GRAPH SELECTION frame, wait and recognize isobare lines presented. Try to use other buttons to see next 2D graphs.

Press "h- ξ -lgp" button again" to return to 3D view, press "border sat./bubble" radio, wait to complete, press "border isobare", wait to complete them, press "near critical region", wait to complete, feel thermodynamic 3D space of phases balance on this graph,

You may also press "s- ξ -T" button and feel thermodynamic 3D space of phases balance on this graph, press "lgp-1/T- ξ " button and feel 3D space of phases balance on this graph

Return to upper bar, go to CYCLE part,

CYCLE

Press SHORT COURSE button, entrance text is presented, read it

		PHASE CYCLE			LE			
	SHORT	CALC &	SHORT	DEVICE	CALC	GRAPH	TUDEA	
A needadge alexyption enforcement is presented in the Figure. The inforcement is in the information is analysis in the information part is including the condenser. Subtraction part is including the condenser, solution heat exchanger, solution need exchanger. The information of the way of solvent separation rule. The structure of the alsongtion may be exceeded the solvent of the solvent separation of the way of solvent separation. The structure of the alsongtion may be exceeded the solvent separation in the solvent separation. The structure of the alsongtion may be exceeded the solvent separation is a solvent separation. The structure of the alsongtion may be exceeded the solvent separation is a solvent separation. The structure of the alsongtion may be exceeded the solvent separation is particular machine during the condenser. A way the solvent separation is a solvent separation is a solvent separation is a solvent separation is a solvent separation in the solvent separation. The structure of the alsongtion may be exceeded the solvent separation is a solvent separation in the solvent separation is a solvent separation. The structure of the alsongtion may be exceeded the solvent separation is a solvent separation is a solvent separation is a solvent separation in the solvent separation is a solvent separation is a solvent separation in a solvent separation is a solvent separatin the solvent separation is a solvent separatio	after is a typical or 1 parts: xxpansion valve, solution pump, and between the gold between the gold between the different for the solution pump, and between the solution the the streams of a not refrigerent the streams of a not refrigerent to the streams of the streams of a not refrigerent to the streams of the	CONDENSE CONDENSE Mengensen land Mengensen land EXPLANCER EXPLANCE	PART	is still containin y of a cycle and ulations proceed the last calcula	solution. Receive and presents.	a source of the solve of the so	SOLUTION BEAN SOLUTION HEAT EXPANSION VALVE BER Int (water). T version of t use for range s of the cyc	

Press DEVICE DESCRIPT button, look at animation, devices and points description,

Press CALC button, there is main part of cycle calculation. On left side there are input datas collected, on right side you can see only empty place of results. Be aware of data value, the cycle parameters have to keep between some ranges. On the right side of datas frame a set of recommended values is presented.

			PHASE SHORT CALC & SHORT COURSE GRAPH COURSE	CYCLE DEVICE CALC GR	лрн лэоџт
PHASE CALC A SHCAT CALC A SHCAT CALC A SHCAT CALC A SHCAT COURSE CALC A SHCAT COURSE CAL SHCAT COURSE CAL SHCAT COURSE CAL SHCAT COURSE CAL SHCAT	cycle input data: (set - refigerant concentration, tight) (set - refigerant concentration, tight) datas - temp, ofference in desorber./C tivtic - temp, ordenderser cooling water on Initi./C datar- temp, ofference in condenser./C datar- temp, datarece of logid in refiger. Neat exch./C tice - temp, ordense of refigerant in exportative datar- temp, datarece of refigerant in exportative temp.	range 0.995 0.995 170 140-195 3 3+6 27 20400 6 3+6 10 6+15 -20 -10+-40 10 7+12 3 3+6 17 79400	cycle calculation results: 1 nch skalon on paso-duet towards the pump 1 nch skalon on paso-duet towards calculated 2 nch skalon on steaster init 3 por skalon on the desorter paid & exchanger hiet 4 nch skalon on the desorter paid & exchanger hiet 5 por skalon on the desorter paid & exchanger hiet 6 nch skalon on absorter init 7 legal or thight and subsorter init 8 nch refigerant vapour before recollers 1 legal or thight and towards number 1 legal or thight and towards number 9 legal refigerant vapour offers the condenser 1 legal or thight and towards number 9 legal refigerant vapour on exposure number 10 refigerant vapour on exposure number 11 refigerant vapour on exposure init	to Pina Sata Kata	h sung
	Δhrs - temp, increase of blancher cooling water, 'C Δh - temp, difference on blancher, 'C Δha - temp, difference on the tower rectifier shelf, 'C Δha - textocol, of poor solut, on heat exch, outer,'C wavportabilitationer relative pressure decreas, - cooling capacity, W/	5 3+15 3 3+5 10 8+15 5 0+10 0.075 0.075 1	heat & power C UN	fluid mass flow refigerent rich solution poor solution rich solution circut o	m kg/s
			COP	CALCULATE	PRINT

oftware for Elsevier article JIJR-S-10-00240 - version 2010-03-17

Press CALCULATE button on the bottom of that screen, wait for results, look at calculated values. If you wish to return to point's name or cycle animation you may press DEVICE DESCRIPT button again.

Press GRAPH button. Look at 3D box of cycle calculated. Wait and recognize cycle points presented at first on h- ξ - lgp graph

Press "flow animation" radios and look at animation, press again to switch it off,

Press "s- ξ -T" button and recognize cycle points on this graph

Press "lgp-1/T- ξ " button and recognize cycle points on this graph

Rules and options

You may add some isolines to graph, you may transform 3D view to 2D view according to the button pressed. To enlarge the view - press "CTRL" key and drag the mouse right-left,

10

To move the view - press "SHIFT" key and drag the mouse right-left, up-down, To change properties of the perspective used - press "ALT" key and drag the mouse right-left,

If many isolines are used, you can see many black box signs on the right side of the screen near the radios. It means the many lines are stored in processor memory. It slows down rotation of 3D view when you drag and move it. If it's a trouble press "memored lines clear" radio. All isolines collected up to this moment are cleared. Speed of of the view motion should increase.

Procesor of the computer used should by really good. More then 1,6GHz of the procesor's clock speed is recommended. Two cores makes the calculation speed better. To see the procesor's engagement degree look at the orange coloured animation of desorber on the upper bar. If bubbles flow up, the procesor speed is fulfilling all demands. When bubbles stop - the procesor is working very hard.

Press "sweeping motion" radio on 3D GRAPH SELECTION (left, upper frame), wait 10 sec and look at full motion. Press "sweeping motion" again and wait, the box motion is slows down and stops at the end.

Look at the upper bar and press ABOUT button, there is the software description text.

735 0 K									
	WOMIN-WATER VER	2.0	SHORT	GRAPH	SHORT	DEVICE	CALC	GRAPH	NBOUT
THE SOFTWARE						TH		DRS	18 A.
The authors' idea was a creation	of three-dimensional gr	aphs directly on a computer so	creen according to	o the termodyr	amical properti	es of		200	Real ty
the solution. The method of the pro Eichler et al. (1990). Initially only I	perties calculation is bas wo-axial graphs were or	ed on Gibbs potential propose sated. The graphs used were:	d by Maczek (19 h-ξ and s-ξ in a	84), the softwa version suitabl	re was improve e for the absorp	d by		34	(lips
machine design. The possibility of	the third axis usage o	irected the authors' minds to	owards the creat	ion of a thre	e-axial graph i	n an			100
improvement aids the better percen	tion of three-dimension	l graphs.	ca cienta to uj	shitely a ber	pecare nem		Index		a second
a mas		The interactive working especially through a comput	mode makes the er mouse move.	software read	t to user demain of drag and ro	nds,			1
ALIMAN S		method significantly improve	ed the perception	of three-dime	isional graphs.	The M	0-1		WELL P
	i in	three-dimensional graphs	are rotatable, r	novable, scala	ble, with post	able			
A A A	- CHIL	view creation was the first st	Establishing the tep to prepare the	procedures of a Absorption 31	three-dimensi tool software.	onal Tr	to use the	software, it cou	ld be suitab
	·< @	The first version of the described in Polish in a h	software named	Absorpcja 3D Jagazine by a	was prepared	and and	you, too.	worki DhD	
D	drag and rotate method	Kasperski (2007). The softw	are was tested a	t the Faculty of	Mechanical and	1	Janusz Eich	ler, PhD	
Power Ingineering of Wroclaw Univ software and its prepare new versi	ersity of Technology in P	pland for two years. The colle-	ted experience e educational proc	nabled the aut	hors to improve	e the e-	mail: jacel	k.kasperski@pwr.	wroc.pl
students and lecturers of refrigerati	on machine division. For	educational and scientific purp	poses the softwar	e is available f	ree of charge or	the			
The software (with the code of	about 4,500 lines) has	been prepared in Action Scr	ipt 2 language i	n Macromedia	Flash 8 comme	ercial	111 2		
software. The exported swf file is 1.6GHz are recommended.	set on a HTML website	A screen resolution of more	than 1000*600	px, processor :	speed of more	than		Faculty of Mechanic Engineering,	cal and Power
References								Institute of Heat Er and Fluid Mechanic	rgineering s
Eichier, J., Kasperski, J., 2007. Wasalizacja i oblici absorption cycle – Absorpcja/ID software. Refn	ante obiegu absorpcyjnego na roat peration, 10, pp. 30-17).	wur Nei3+H2D - program Absorptija 3D. Ch	ladektera, 30, 10-37 (vi	sualization and calcul	ation of ammonia-wat	e			
Eichler, J., Pawlus, J. Hisoryraki, M., Kasperski, J., Wroclaw (Absorption diffusion heat pomp - mos	1990. Absorpcyina dyfuzyjna pom feling of thermosiphone and pump	pa ciepla – modelowanie układow tornosył ing devices. Report 1-20, SPR 77/90, Wroc	bnowych i pompowych, law University of Techno	Report 1-20, SPR 77/ logy, Wrodaw, Polanc	80, Politzchnika Wrock	orsha,	0.77	Wrocław University Wybrzeze Wyspians	of Technology kiego 27,
Maczek, K., 1984. Modelowanie matematycone w o	ptyrealizacji urzadzen ciepinych so	poyjeych, Honografie, Politechnika Krakow	ska, szakpe (Holhemat	ical modeling for sorp	tion thermal machine			Viroclaw, 50-370, F	Poland

software for Elsevier article JIJR-S-10-00240 - version 2010-05

That's all.

The software *Absorption 3D tool* and tutorial have been prepared for submission "Ammoniawater absorption cycle on three-dimensional graphs - The Absorption 3D tool software" manuscript number JIJR-D-10-00172.

Tutorial version 2010-05-20 Software version 2010-05-19 available at http://www.itcimp.pwr.wroc.pl/absorption3d/

Jacek Kasperski, Janusz Eichler Faculty of Mechanical and Power Engineering Wroclaw University of Technology, Poland

mail: jacek.kasperski@pwr.wroc.pl

11

ABOUT